DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH
https://www.di-verlag.de/de/Zeitschriften/atp-edition/2016/09/Big-data-analytics-for-proactive-industrial-decision-support

Artikelinformationen

Big data analytics for proactive industrial decision support

Approaches and first experiences in the FEE Project

Autoren: Martin Atzmueller/University Of Kassel / Benjamin Klöpper/Abb Corporate Research Center Germany / Hassan Al Mawla/Abb Corporate Research Center Germany / Benjamin Jäschke/University Of Kassel / Martin Hollender/Abb Corporate Research Center Germany / Markus Graube/Technische Universität Dresden / David Arnu/Rapidminer / Andreas Schmidt/University Of Kassel / Sebastian Heinze/Technische Universität Dresden / Lukas Schorer/Abb Corporate Research Center Germany / Andreas Kroll/University Of Kassel / Gerd Stu

atp edition, vol. 58, no. 09, pp. 62-74, 2016

Veröffentlicht in atp edition

15,00 EUR

Seiten 62-74

 

Big data technologies offer new opportunities for analyzing historical data generated by process plants. The development of new types of operator support systems (OSS) which help the plant operators during operations and in dealing with critical situations is one of these possibilities. The project FEE has the objective to develop such support functions based on big data analytics of historical plant data. In this contribution, we share our first insights and lessons learned in the development of big data applications and outline the approaches and tools that we developed in the course of the project.

Schlagwörter: big data / data analytics / decision support

Title: Big data analytics for proactive industrial decision support

Subtitle: Approaches and first experiences in the FEE Project

Abstract: Big-Data-Technologien eröffnen neue Optionen zur Analyse historischer Anlagendaten in der Prozessindustrie. Eine Möglichkeit ist die Entwicklung neuer Operator-Unterstützungssysteme (OSS), die dem Anlagenfahrer im Betrieb und bei der Behandlung kritischer Situationen assistieren. Das Projekt FEE hat das Ziel, derartige Unterstützungsfunktionen basierend auf Big Data Analytics unter Nutzung historischer Anlagendaten zu entwickeln. In diesem Beitrag teilen wir erste Erfahrungen und Lessons Learned hinsichtlich der Entwicklung von Big-Data-Applikationen.Weiterhin stellen wir im Projektentwickelte Lösungsansätze und Werkzeuge dar.

Keywords: Big Data / Data Analytics / Entscheidungsunterstützung

Referenzen:
  1. 0[1] Folmer J., Vogel-Heuser, B.: Computing dependent industrial alarms for alarm flood reduction. In: Proc. 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp.1-6, IEEE 2012
  2. 0[2] Varga, T., Szeifert, F., Abonyi, J.: Detection of Safe Operating Regions: A Novel Dynamic Process Simulator Based Predictive Alarm Management Approach. Industrial & Engineering Chemistry Research 49(2), 658–668, 2010
  3. 0[3] Windmann, S., Maier, A., Niggemann, O., Frey, C., Bernardi, A., Gu, Y., Pfrommer, H., Steckel, T., Krüger, M., Kraus, R.: Big Data Analysis of Manufacturing Processes. In: Proc. European Workshop on Advanced Control and Diagnosis (ACD2015), IOP 2015
  4. 0[4] McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. Barton, D.: Big Data. The management Revolution. Harvard Bus Review 90(10), S. 61-67, 2012
  5. 0[5] Shearer, C.: The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4), S. 13-22, 2000
  6. 0[6] Azevedo, A, Santos, M. F.: KDD, SEMMA and CRISP-DM: a parallel overview. In: Proceedings of the IADIS European Conference on Data Mining. IADIS 2008
  7. 0[7] Klöpper, B., Dix, M., Schorer, L., Ampofo, A. Atzmueller, M., Arnu, D., Klinkenberg, R: Defining Software Architectures for Big Data Enabled Operator Support Systems. In: Proc. IEEE International Conference on Industrial Informatics (INDIN). IEEE Press, 2016
  8. 0[8] Hollender, M.: Collaborative Process Automation Systems, ISA 2010
  9. 0[9] Crowe, C. M.: Data reconciliation—progress and challenges. Journal of Process Control 6(2), 89-98, 1996
  10. [10] Thornhill, N. F., Choudhury, M. S., Shah, S. L.: The impact of compression on data-driven process analyses. Journal of Process Control 14(4), 389-398, 2004
  11. [11] Liu, H., Shah, S., Jiang, W.: On-line outlier detection and data cleaning. Computers & chemical engineering 28(9), 1635-1647, 2004
  12. [12] Atzmueller, M., Kluegl, P., Puppe, F.: Rule-Based Information Extraction for Structured Data Acquisition using TextMarker. Proc. LWA, 2008
  13. [13] Atzmueller, M., Schmidt, A., Hollender, M.: Data Preparation for Big Data Analytics: Methods & Experiences. In: Atzmueller, M., Oussena, S., Roth-Berghofer, T. (eds): Enterprise Big Data Engineering, Analytics, and Management, 157-170. Hershey,PA, IGI Global 2016
  14. [14] Huss, J.: Prototypische Entwicklung einer Trend basierten Datenbank-Suchmaschine, Dissertation TU Berlin, 2008
  15. [15] Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proc. IEEE Symposium on Visual Languages, pp. 336–343, IEEE 2016
  16. [16] Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-Oriented Community Detection using Exhaustive Subgroup Discovery. Information Sciences 329, pp. 965-984, 2016
  17. [17] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51(1), S. 107-113, 2008
  18. [18] Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems, Manning 2013
  19. [19] Barbaci, M., Clements, P., Lattanze, A., Northrop, L., Wood, W.: Using the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Software Architecture for a Product Line of Avionics Systems: A Case Study. In: Tech. Report CMU/SEI-2003-TN-012, Software Engineering Institute, Carnegie Mellon University, 2013
  20. [20] Ljung, L.: Perspectives on system identification, Annual Reviews in Control 34(1), pp.1-12, 2010
  21. [21] Qin, S. J., Badgwell, T. A.: A survey of industrial model predictive control technology, Control Engineering Practice 11(7), 733-764, 2003
  22. [22] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering 24(5), pp.823-839, 2012
  23. [23] Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Processing 99, pp.215-249, 2014
  24. [24] Zhang, L., Lina, J., Karim, R.: An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection. Reliability Engineering & System Safety 142, pp. 482-497, 2015
  25. [25] Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowledge and information System 3(3), pp. 263-286, 2001
  26. [26] Kluegl, P., Atzmueller, M., Puppe, F.: Meta-Level Information Extraction. Proc. 32nd Annual German Conference on AI, pp.233-240. Springer 2009

 

DIV Deutscher Industrieverlag GmbH / Vulkan-Verlag GmbH

DIV Deutscher Industrieverlag GmbH
Arnulfstraße 124
80636 München
Tel.: +49 (0)89 - 203 53 66-0
Fax: +49 (0)89 - 203 53 66-99
Sitz München, HRB: 128031, Geschäftsführer: Carsten Augsburger, Jürgen Franke

Vulkan-Verlag GmbH
Friedrich-Ebert-Straße 55
45127 Essen
Tel.: +49 (0)201 82002-0
Fax: +49 (0)201 82002-40
Sitz Essen, HRB: 986, Geschäftsführer: Carsten Augsburger, Jürgen Franke

E-Mail: info@di-verlag.de
Internet: www.di-verlag.de